One-hour-ahead wind power forecast using hybrid grey models
by Ahmed H. Osman; Mohamed S. Hassan; Fatemeh Marzbani; Taha Landolsi
International Journal of Operational Research (IJOR), Vol. 27, No. 1/2, 2016

Abstract: This paper proposes two hybrid grey-based short-term wind power prediction techniques: GM(1,1)-ARMA and GM(1,1)-NARnet. These techniques are combined with ARMA models and nonlinear autoregressive neural network (NARnet) models, respectively. The efficiency of these algorithms is examined using a recorded wind power dataset. The performance of these predictors is compared with classical ARMA models as well as the traditional grey model GM(1,1). Unlike the classical predictors, the proposed hybrid algorithms are not affected by the inherent uncertainty in the wind power. Therefore, the results obtained using the proposed hybrid algorithms outperform those obtained using classical predictors. In contrast to the GM(1,1)-ARMA model, the GM(1,1)-NARnet model utilises the nonlinear components of wind power in the forecasting procedure. Consequently, the obtained results from the GM(1,1)-NARnet outperform those obtained by the GM(1,1)-ARMA.

Online publication date: Mon, 22-Aug-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Operational Research (IJOR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com