Multi-objective optimal computing budget allocation for multi-objective particle swarm optimisation with particle-dependent weights Online publication date: Mon, 22-Aug-2016
by Yue Liu; Loo Hay Lee; Ek Peng Chew
International Journal of Simulation and Process Modelling (IJSPM), Vol. 11, No. 3/4, 2016
Abstract: In this paper, we develop a multi-objective optimal computing budget allocation method with multiple weights (MOCBAmw) assigned to each particle in multi-objective particle swarm optimisation based on weighted scalarising functions (MPSOws) algorithm under the stochastic environment. By intelligently allocating computing budget among all particles instead of simple equal allocation (EA), we are able to improve the probability of correctly selecting the global best designs under limited computing budget. Improvement of correct leading particles identification in each generation of the MPSOws procedure helps to facilitate the convergence of the swarm to the Pareto front under the stochastic environment. Test results from bi-objective ZDT problems and tri-objective DTLZ problems have shown that MOCBAmw achieves a better convergence rate and a higher hypervolume than EA under the same noise setting.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Simulation and Process Modelling (IJSPM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com