Feasibility of polyetherketone (PEK) composites: a solution for long-term nuclear waste storage Online publication date: Tue, 06-Sep-2016
by G. Ajeesh; Shantanu Bhowmik; Venugopal Sivakumar; Lalit Varshney; Virendra Kumar; Mathew Abraham
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 10, No. 3, 2016
Abstract: This investigation highlights the effect of radiation, chemical and thermal environments on mechanical and thermal properties of polyetherketone (PEK) composites and its rationale for long-term nuclear waste storage. The tests are conducted on samples manufactured using PEK and PEK reinforced with modified carbon nano fibre (CNF). The specimens are subjected to gamma radiation doses of 5 MGy, which is equivalent to the cumulative dosage of radiation from spent nuclear fuel until the radioactivity neutralises completely. Studies under transmission electron microscopy (TEM) reveal that there is a uniform dispersion of modified CNF in PEK. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicate that there are no significant changes in thermal properties of PEK and PEK composite when exposed to aggressive environments. It is observed that tensile strength of polymeric samples remains unchanged when exposed to gamma radiation and thermo-chemical environment.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com