Fluctuation prediction of stock market index by adaptive evolutionary higher order neural networks Online publication date: Sat, 24-Dec-2016
by Sarat Chandra Nayak; Bijan Bihari Misra; Himansu Sekhar Behera
International Journal of Swarm Intelligence (IJSI), Vol. 2, No. 2/3/4, 2016
Abstract: The stock market is complex and dynamic in nature, and has been a subject of research for modelling its random fluctuations. Higher order neural network (HONN) has the ability to expand the input representation space, perform high learning capabilities and have been utilised to solve many complex data mining problems. To capture the extreme volatility, nonlinearity and uncertainty associated with stock data, this paper compares two adaptive evolutionary optimisation-based Pi-Sigma neural networks (AE-PSNN), for prediction of closing prices of five real stock markets. For this experimental study, BSE, DJIA, NASDAQ, FTSE and TAIEX stock indices are employed for short, medium and long term predictions. The performance of the AE-PSNN models has been compared with that of a gradient descent-based PSNN (GD-PSNN) model and found to be superior in terms of prediction accuracy and prediction of change in direction.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Swarm Intelligence (IJSI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com