A conditionally positive definite kernel function for possibilistic clustering
by Jyotsna Nigam; Meena Tushir; Dinesh Rai
International Journal of Artificial Intelligence and Soft Computing (IJAISC), Vol. 6, No. 1, 2017

Abstract: In the past few years, the kernel-based clustering methods have overpowered the conventional clustering techniques in the field of unsupervised learning due to its strength and effectiveness to deal with nonlinearly separable data and mapping it into higher dimensional feature space by preserving the inner structure of the data. Many kernel functions exist in the literature which works effectively depending on the type of dataset to be used. In this paper, we have proposed a new log kernel function which is embedded in the unsupervised possibilistic clustering and this kernel function is not explored much in research. We have done extensive comparison of the proposed algorithm with few clustering techniques over a test suite of several synthetic and real life datasets. Based on the experimental results, we have proved that our algorithm gives better performance than the previous methods on various comparative parameters like ideal centroids, error rate, misclassification, accuracy and elapsed time.

Online publication date: Sun, 21-May-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Artificial Intelligence and Soft Computing (IJAISC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com