Thermodynamic optimisation of a hybrid solar-geothermal power plant using Taguchi method
by Anil Erdogan; Duygu Melek Cakici; Can Ozgur Colpan
International Journal of Exergy (IJEX), Vol. 23, No. 1, 2017

Abstract: In this paper, an exergetic optimisation of a hybrid solar-geothermal power plant based on Taguchi method is presented. The effects of ambient temperature and solar irradiance on the output parameters of the system were first studied using a thermal model. Then, an optimisation study based on Taguchi method was performed to find the values of the key design and operating parameters that maximises the net power output and the electrical and exergetic efficiencies of the system. The results of this study showed that when the solar irradiance increases, the net power output and the exergetic and electrical efficiencies increase. It was also shown that the turbine inlet and exit pressures are the most dominant factors affecting the performance of the system. In addition, the net power output and the electrical and exergetic efficiencies can be increased up to 16,773 kW, 21.63%, and 70.06%, respectively, for the case study conducted.

Online publication date: Mon, 12-Jun-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com