Root cause analysis of actuator fault based on invertibility of interconnected system Online publication date: Thu, 22-Jun-2017
by Mei Zhang; Ze-tao Li; Michel Cabassud; Boutaïeb Dahhou
International Journal of Modelling, Identification and Control (IJMIC), Vol. 27, No. 4, 2017
Abstract: This paper addresses the problem of root cause analysis (RCA) of actuator fault. By considering an actuator as an individual dynamic subsystem connected with process dynamic subsystem in cascade, an interconnected system is then constituted. The fault detection and diagnosis (FDD) algorithm is carried out in actuator subsystem and aims at identifying the root causes of actuator faults. According to real plant, outputs of the actuator subsystem are assumed inaccessible and are reconstructed by measurements of the global system, thus providing a means of monitoring and diagnosis of the plant at both local and global level. A condition of invertibility of the interconnected system is first developed to guarantee that faults occurring in the actuator subsystem will affect the measured output of the global system distinguishably. For that, a necessary and sufficient condition is proposed to ensure invertibility of the interconnected system. Effectiveness of the proposed approach is demonstrated on an intensified HEX reactor.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com