Robust load frequency control for uncertain nonlinear interconnected power systems
by Jianping Guo; Lili Dong
International Journal of Automation and Control (IJAAC), Vol. 11, No. 3, 2017

Abstract: A robust load frequency controller is applied to a nonlinear three-area interconnected power system where non-reheat, reheat, and hydraulic turbines are distributed in different areas respectively. The nonlinearities such as governor dead band and generation rate constraint are included in the block diagram model of the power plant. A sliding mode controller (SMC) is developed to regulate frequency error and tie-line power error of the power system despite the presences of load changes and parameter variations. The SMC is simulated on the nonlinear and three-area interconnected power system. The simulation results demonstrate the robustness of the control system against external disturbance and system uncertainties. They also show that the SMC successfully drives the frequency error and tie-line power error to zero.

Online publication date: Sat, 01-Jul-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com