DASE2: differential alternative splicing variants estimation method without reference genome, and comparison with mapping strategy Online publication date: Thu, 24-Aug-2017
by Kouki Yonezawa; Keisuke Nakata; Ryuhei Minei; Atsushi Ogura
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 18, No. 1, 2017
Abstract: Alternative splicing is a mechanism to produce gene expression diversity under the constraint of a limited number of genes, causing spatiotemporal gene expression in tissues and developmental processes in most organisms. This mechanism is well studied in model organisms so far but not in non-model organisms because the current standard method requires genomic sequences as well as fully annotated information of exons and introns. However, it is essential to uncover the landscape of alternative splicing of organisms to understand its evolutionary impacts and roles. Therefore, we developed a method for condition-specific alternative splicing estimation without reference genome based on de novo transcriptome assembly. We also tested estimation results of DASE with genome mapping method to infer reliability of our method, and displayed that detection level of alternative splicing can be comparable with mapping strategy and useful for the screening of condition specific alternative splicing in non-model organisms. The software is deposited to Github website.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com