Epsilon-fuzzy dominance sort-based composite discrete artificial bee colony optimisation for multi-objective cloud task scheduling problem Online publication date: Thu, 07-Dec-2017
by B. Gomathi; Karthikeyan Krishnasamy; B. Saravana Balaji
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 13, No. 1/2/3, 2018
Abstract: Cloud computing environment provides on-demand virtualised resources for cloud application. The scheduling of tasks in cloud application is a well-known NP-hard problem. The task scheduling problem is more complicated while satisfying multiple objectives, which are conflict in nature. In this paper, Epsilon-fuzzy dominance based composite discrete artificial bee colony (EDCABC) approach is used to generate Pareto optimal solutions for multi-objective task scheduling problem in cloud. Three conflicting objectives, such as makespan, execution cost and resource utilisation, are considered for task scheduling problem. The Epsilon-fuzzy dominance sort approach is used to choose the best solutions from the Pareto optimal solution set in the multi-objective domain. EDCABC with composite mutation strategies and fast local search method are used to enrich the local searching behaviours which help to avoid the premature convergence. The performance and efficiency of the proposed algorithm is compared with NSGA-II and MOPSO algorithms. The simulation results express that proposed EDCABC algorithm substantially minimises the makespan, execution cost and ensures the proper resource utilisation when compare to specified existing algorithm.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com