Data mules-oriented particle swarm optimisation-based mobile sink data gathering techniques with analytical data analysis using linear regression
by Govindarajan Saravanan; M.J.S. Rangachar
International Journal of Business Information Systems (IJBIS), Vol. 27, No. 2, 2018

Abstract: Wireless sensor networks with converge-cast nature poses great challenge on data collection strategies. In order to cut down the issues on constrained resources of wireless nodes, a sink-based (PSOMSDG) particle swarm optimisation-based mobile sink data gathering had been proposed. This PSOMSDG is a rendezvous-based protocol which uses three metrics for data gathering based on the nodes position as; when the nodes are in inertia; when they change to optimistic position (based on current scenario); finally when they change to swarms' optimistic position. These three metrics avoid long detour path by providing global optimal length constrained trajectory. In addition, residual energy consumption of protocol was achieved in a balanced manner. The performance is noticed with increasing data rates and compared with biased sink mobility with adaptive stop times (BSMAST). Then data was obtained with NS2 simulation which was developed into a linear regression model. Finally, the analytical study states that there is a strong relationship between data rate and energy consumption. The analysis of variance (ANOVA)-based analysis shows that there is a strong influence between groups.

Online publication date: Sun, 07-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Information Systems (IJBIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com