Material point method and smoothed particle hydrodynamics simulations of fluid flow problems: a comparative study
by Zheng Sun; Haiqiao Li; Yong Gan; Hantao Liu; Zhilong Huang; Lisha He
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 18, No. 1, 2018

Abstract: The material point method (MPM) and the smoothed particle hydrodynamics (SPH) are two commonly used particle-based methods for solving large-deformation problems. Especially, the SPH has been widely applied to fluid dynamics problems, while the MPM performance in fluid dynamics simulations has rarely been investigated. In this study, the capabilities of the MPM and the SPH in simulating fluid dynamics problems have been quantitatively examined and compared through three example problems, i.e., Poiseuille and Couette flows and water dam break flows. Both numerical methods could yield the results in good agreements with the theoretical and experimental results. Without requiring neighbour search and additional boundary particles, the MPM exhibits significantly higher computational efficiency as compared with the SPH. The comparisons also demonstrate that the MPM has higher accuracy and faster convergence than the SPH. It is shown that the MPM could be a promising alternative to the SPH for the fluid dynamics simulations. Future work for the improvement of the MPM in fluid dynamics modelling is discussed.

Online publication date: Mon, 29-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com