Design of experiments to generate a fuel cell electro-thermal performance map and optimise transitional pathways
by Quentin Meyer; Lara Rasha; Hans-Michael Koegeler; Simon Foster; Paul Adcock; Paul R. Shearing; Dan J.L. Brett
International Journal of Powertrains (IJPT), Vol. 7, No. 1/2/3, 2018

Abstract: The influence of the air cooling flow rate and current density on the temperature, voltage and power density is a challenging issue for air-cooled, open cathode fuel cells. Electro-thermal maps have been generated using large datasets (530 experimental points) to characterise these correlations, which reveal that the amount of cooling, alongside with the load, directly affect the cell temperature. This work uses the design of experiment (DoE) approach to tackle two challenges. Firstly, an S-optimal design plan is used to reduce the number of experiments from 530 to 555 to determine the peak power density in an electro-thermal map. Secondly, the design of experiment approach is used to determine the fastest way to reach the highest power density, yet limiting acute temperature gradients, via three intermediate steps of current density and air cooling rate.

Online publication date: Tue, 13-Mar-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Powertrains (IJPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com