Performance improvement options of scientific applications on XeonPhi KNL architectures
by Shajulin Benedict
International Journal of Knowledge Engineering and Data Mining (IJKEDM), Vol. 5, No. 1/2, 2018

Abstract: Intel's recent manycore processor KNights Landing (KNL) promises high performance for scientific applications. Careful tuning for the complex chip architecture is required to efficiently exploit the chip's hardware resources. This paper describes performance improvement techniques and demonstrates their effectiveness for scientific applications. Experiments were conducted with some of the National Aeronautics and Space Administration (NASA's) advanced supercomputing (NAS) parallel benchmarks, and the effectiveness of: 1) advanced vector extensions (AVX-512) vectorisation support; 2) manycore threading support; 3) the utilisation of thread affinities for different KNL modes, was analysed.

Online publication date: Fri, 29-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge Engineering and Data Mining (IJKEDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com