Recommendation research trends: review, approaches and open issues Online publication date: Sat, 30-Jun-2018
by Anu Taneja; Anuja Arora
International Journal of Web Engineering and Technology (IJWET), Vol. 13, No. 2, 2018
Abstract: Recommendation systems have been well established to reduce the problem of information overload and have become one of the most valuable tools applicable to different domains like computer science, mathematics, psychology, etc. The initial interest to write this survey is composing a concise research paper on the key motivation behind the various existing recommender systems and their techniques used in various domains. In this paper, prioritisation of recommendation keywords is presented in form of weighted keyword network along with keywords associations according to their usage in reference section literature. Consequently, this paper provides comprehensive details of various public datasets, their corresponding techniques, comparative analysis of existing recommendation approaches based on faced challenges and performance measures are examined. This study will help the researchers and academicians in quickly understanding the existing work and in planning future recommendation studies for designing a unified and coherent recommender system.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Web Engineering and Technology (IJWET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com