Multi-objective optimisation of EDM process using ANN integrated with NSGA-II algorithm Online publication date: Wed, 25-Jul-2018
by Shiba Narayan Sahu; Narayan Chandra Nayak
International Journal of Manufacturing Technology and Management (IJMTM), Vol. 32, No. 4/5, 2018
Abstract: Simultaneous optimisation of each selected parameter in case of EDM process is difficult. As a result, modelling and optimisation of EDM process has been emerged as a prominent research area. This paper presents an artificial intelligent approach for process modelling and optimisation of A2 steel using EDM. In this investigation, appropriate manufacturing conditions, optimal MRR and TWR are focussed. Initially, process modelling of MRR and TWR of A2 steel using EDM has been performed by ANN. Then, NSGA-II has been implemented to find out the best trade-ups between the two conflicting response parameters MRR and TWR. Maximum MRR is achieved at upper bound parameter settings of Ip and Tau and lower bound parameter settings of Ton and V. Again, optimum TWR can be achieved by the lower bound parameter settings of Ip and Tau, upper bound of V, and the middle of the machining range of Ton.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Technology and Management (IJMTM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com