A machine learning approach for condition monitoring of wind turbine blade using autoregressive moving average (ARMA) features through vibration signals: a comparative study
by A. Joshuva; V. Sugumaran
Progress in Industrial Ecology, An International Journal (PIE), Vol. 12, No. 1/2, 2018

Abstract: In wind turbine, blades are the major component for capturing the wind, however, due to environmental conditions it prompts to get a fault. To overcome this problem, a machine learning based condition monitoring technique is incorporated into the wind turbine to identify the fault classification which occurred in the blade. In this study, a three-bladed horizontal axis wind turbine was chosen and the faults like blade bend, blade cracks, hub-blade loose connection, blade erosion and pitch angle twist were considered as these are the faults mostly affect the turbine blade. In this study, the autoregressive-moving-average (ARMA) features have been extracted from the raw signal and the dominating feature was selected through J48 decision tree algorithm followed by the fault classification using machine learning classifiers. The results were compared with respect to the classification accuracy and their computational time of the classifier.

Online publication date: Thu, 25-Oct-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Industrial Ecology, An International Journal (PIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com