Knowledge transfer for efficient cross domain ranking using AdaRank algorithm Online publication date: Tue, 11-Dec-2018
by N. Geetha; P.T. Vanathi
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 14, No. 1/2, 2019
Abstract: Learning-to-rank has been an exciting topic of research exclusively in hypothetical and the productions in the information retrieval practices. Usually, in the learning-based ranking procedures, it is expected the training and testing data are recovered from the identical data delivery. However those existing research methods do not work well in case of multiple documents retrieved from the cross domains (different domains). In this case ranking of documents would be more difficult where the contents are described in multiple documents from different cross domains. The main goal of this research method is to rank the documents gathered from the multiple domains with improved learning rate by learning features from different domains. The feature level information allocation and instance level information relocation are achieved with four learners namely RankNet, ranking support vector machine (SVM), RankBoost and AdaRank. The estimation results presented that the AdaRank algorithm achieves good performance.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com