Computational and experimental study of swirl flow within SI engine with modified shrouded intake valve
by Bidesh Roy; Rahul Dev Misra; Krishna Murari Pandey; Abhijit Sinha; Bachu Deb
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 19, No. 2, 2019

Abstract: Swirling flow can be used in a spark-ignition engine to increase turbulence intensity of the working fluid in the engine by using a shrouded intake valve. However, on using shrouded intake valve, a greater restriction to the incoming fluid is offered. In this backdrop, a computational and experimental study of swirl flow within the spark-ignition engine with a modified shrouded intake valve has been carried out and the same is then compared with 100°, 120° and 180° shrouded intake valves. The results show that the fluid flow patterns generated by the intake valves within the engine cylinder are similar in nature. The engine with the modified shrouded intake valve generates a substantial amount of swirl with comparatively lesser restriction to the incoming fluid. Whereas, the engine using other types of intake valves, either generates higher swirl ratio with lower mean flow coefficient or lower swirl ratio with higher mean flow coefficient.

Online publication date: Mon, 25-Mar-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com