IBBO-LSSVM-based network anomaly intrusion detection
by Peng Zhou; Wen-Kuang Chou
International Journal of Embedded Systems (IJES), Vol. 11, No. 3, 2019

Abstract: Owing to the variety and complexity of network intrusion, the traditional network anomaly intrusion detection model cannot accurately classify and identify the abnormal intrusion behaviour of the network, resulting in poor performance when detecting the network anomaly intrusion. In order to improve the performance of network intrusion detection, we propose a novel network anomaly intrusion detection method, by means of IBBO-LSSVM. In this paper, the least squares support vector machine is applied to model and analyse the network abnormal intrusion detection, which can capture the relationship between network anomaly intrusion types and its corresponding features. Then, an improved biogeography-based approach is applied to optimise the parameters of the network intrusion detection model. Finally, the model is simulated and evaluated on a standard network anomaly intrusion test database. The accuracy of the network anomaly intrusion detection for the proposed method is higher than 90%, demonstrating that the proposed approach is superior to the traditional methods.

Online publication date: Thu, 02-May-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com