Efficient formulation of the rejection-based algorithm for biochemical reactions with delays
by Vo Hong Thanh; Roberto Zunino; Corrado Priami
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 15, No. 2, 2019

Abstract: The rejection-based stochastic simulation algorithm (RSSA) is an exact simulation for realising temporal behaviour of biochemical reactions. It reduces the number of propensity updates during the simulation by using propensity bounds of reactions to select the next reaction firing. We present in this paper a new efficient formulation of RSSA and extend it for incorporating biochemical reactions with time delays. Our new algorithm explicitly keeps track of the putative firing times of reactions and uses these to select the next reaction firing. By using such a representation, it can efficiently handle biochemical reactions with delays and achieve computational efficiency over existing approaches for exact simulation.

Online publication date: Mon, 13-May-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com