Aggregated clustering for grouping of users based on web page navigation behaviour Online publication date: Fri, 24-May-2019
by R. GeethaRamani; P. Revathy; B. Lakshmi
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 11, No. 2, 2019
Abstract: In this epoch, a significant amount of patterns are retrieved using data mining techniques. Clustering is one of the technique that plays an vital role in web mining. This paper works on MSNBC dataset with the average access length of 6. It aims to cluster the users based on their navigation behaviour. An iterative aggregated clustering is proposed, in which various clustering algorithms like EM clustering, farthest first, K-means clustering, density based cluster, filtered cluster are applied on the dataset. The resultant clusters from various algorithms are aggregated correspondingly and the frequency of instances in each cluster is determined. Then the instance with two-third majority is grouped in that cluster. The work revealed that 91% of users clustered in the first iteration under 17 clusters and 99% of users in subsequent iterations in another 17 clusters and rest of the users are grouped as one cluster, resulting 35 hard clusters.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com